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Abstract-This paper employs a simple laminar axisymmetric model to study multi-component conden- 
sation. In addition to including the complex phase equilibria inherent with multi-component condensation ; 
interfacial shear stress. mass and energy transport are also considered. It is demonstrated that a non- 
condensable gas significantly reduces the interfacial condensation rate. For binary condensation, the 
freestream vapor concentration is very important. Higher concentrations of the more volatile component 

tend to inhibit condensation. 

INTRODUCTION 

THIS WORK analyzes the interfacial mass and energy 
transport occurring at the interface between the vapor 
and liquid phases of a multi-component mixture. It 
examines the condensation taking place on the surface 
of a subcooled liquid mixture, when there is sub- 
surface liquid motion. The geometry for this study is 
identical to the direct-contact forced-convective con- 
densation above a circulating liquid pool used to 
analyze the pressurizer of a nuclear power plant [I]. 
Since the interactions between interfacial forces and 
interfacial mass fluxes are similar for all vapor-liquid 
interfaces, the model can be used to better understand 
the influence of convection near vapor-liquid inter- 
faces in other geometries. For example, binary film 
condensation on Aat plates and inside or outside tubes 
all exhibit very similar interfacial behavior. 

While other investigators have examined interfacial 
pool condensation [l-6], none of their results have 
included multi-component condensation. Also there 
have been some studies of film condensation in the 
presence of a non-condensable gas [7-91, and binary 
film condensation [lO-131. None of these studies, 
however, have fully accounted for the complex 
dynamic coupling occurring at the vapor-liquid inter- 
face. In particular, they do not match the vapor and 
liquid shear stresses at the interface. For a relatively 
stagnant vapor, this is not necessary. For rapidly mov- 
ing vapors, however, the subsequent high interfacial 
shear stress does affect the interfacial condensation 
rate. This work provides a simple, yet rigorous, model 
to demonstrate clearly how interfacial phenomena, 
such as interfacial shear stress and condensation mass 
flux, affect the velocity fields, interact with the com- 
plex phase equilibria, and hence affect the interfacial 
mass and energy transport. 

t Present address : Department of Mechanical, Industrial 
and Nuclear Engineering, University of Cincinnati, 
Cincinnati, OH 45221, U.S.A. 

$ Present address : Department of Mechanical Engin- 
eering. University of California, Irvine, CA 92717, U.S.A. 

The model to be analyzed is graphically represented 
in Fig. 1. A subcooled liquid flows axisymmetrically 
toward a flat gas-liquid interface. In general, the 
liquid is a binary mixture and the gas is a mixture of 
a superheated binary vapor and a non-condensable 
gas (the model will work equally well for more com- 
ponents). To satisfy the no-slip and force balance 
conditions at the interface the gas mixture must also 
be in motion. In order to simplify the formulation and 
to focus attention on the interface, steady-state 
axisymmetric laminar stagnation flows are assumed 
to exist in both the liquid and the mixture. Inviscid 
flow occurs in both fluids except for thin boundary 
layers on either side of the interface. By introducing 

SUPERHEATED VAPOR / 
NONCONOENSABCE 
GAS MIXTURE 

SUBCOOl.EO LIQUID 

FIG. I. Axisymmetric interfacial transport model. 
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NOMENCLATURE 

n stagnation parameter : axial coordinate. 

C, constant, equation (6) 

c, specific heat at constant pressure Greek symbols 
D binary diffusion coefficient z thermal diffusivity 
F dimensionless similarity variable. ;’ activity coefficient, equation (IS) 

equation (24) 11 dynamic viscosity 

9 gravitational acceleration v kinematic viscosity 
h 
lli:, 

latent heat of vaporization P density. 
:-dependence of pressure, equation (26) 

Ja Jakob number, equation (22) Subscripts and superscripts 
k thermal conductivity C condensable substance 
m mass fraction g non-condensable gas 
M molecular weight i f or v 
n mole fraction i substance index 
P pressure r liquid 
Pr Prandtl number, equation (22) 0 stagnation 
r radial coordinate P number of substances 
R specific gas constant S saturation 
SC Schmidt number, v/D V vapor 

T temperature w wall 
Ii radial or streamwise velocity % infinity 
1’ cross-stream velocity * dimensionless, equation (20) 
II’ axial velocity + alternate nondimensionalization, 
s streamwise coordinate equation (44) 

r cross-stream coordinate differentiation w.r.t. :*. 

appropriate similarity variables, the governing equa- 
tions can be transformed into a one-dimensional sys- 
tem of mathematical equations. Therefore, boundary 
conditions are required only in the direction normal 
to the interface. A numerical technique is employed 
to solve this system of equations. 

Previously, the axisymmetric laminar-flow model 
has been used to study pure-component condensation. 
The effects of interfacial forces, subcooling of the 
liquid, and superheating of the vapor have all been 
examined for pure-component condensation [I]. 
Some of these results will be used to simplify the 
analysis of multi-component condensation. 

The next section outlines the mathematical for- 
mulation. After introducing the numerical procedure 
used, multi-component condensation is examined. 
For multi-component condensation, the physics and 
mathematics become slightly more complicated than 
for pure-component condensation. For multi-com- 
ponent condensation the phase equilibria at the inter- 
face is very important. Two cases are studied: con- 
densation when there is a non-condensable gas present 
in the vapor. and condensation of a binary mixture. 
A non-condensable gas tends to accumulate at the 
interface as the vapor condenses. This offers a 
diffusion barrier to the vapor which inhibits con- 
densation. Another way to think of this is that large 
concentrations of a non-condensable gas lower the 
partial vapor pressure and saturation temperature. 

Hence the subcooling is effectively lowered. It is then 
shown that binary condensation is primarily con- 
trolled by thermal transport in the liquid and mass 
transport in the vapor. It is interesting, that by altering 
the vapor concentrations, the same condensation rate 
can be achieved using different liquid temperatures. 

Before introducing the model it is important to re- 
emphasize that while this work closely models the 
direct contact condensation above a circulating liquid 
pool, it has much wider relevance. The same inter- 
action between interfacial forces and interfacial mass 
fluxes occur near all vapor-liquid condensation inter- 
faces. The reason is that interfacial heat and mass 
transfer is a very local phenomenon. Of course for 
other applications, such as binary laminar-film con- 
densation, the non-interface boundary conditions are 
different. But the relationship between the dynamics 
and mass and energy transfer near the interface is very 
similar. 

FORMULATION 

The following equations governing conservation of 
mass. momentum, energy and species are for constant 
density and constant transport properties of the pure 
substances : 
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34 SU, -1 ?P, 
uir +wi-;- = - 7 

CT c-i Pi CT 

( 

d2Ui 1 ?Ui u, d’u, 
+ri ar’+;z-f’E 

) 

dWi SW, -1 ZPi 
ui dr + wi -;- = - -;- 

c:i P, ozi 

dmo, d’m,(j, 
wi - = Di dziZ dzi 

(2) 

(3) 

(4) 

(5) 

where, in the z-direction momentum equation, the ‘+’ 
is for the liquid and the ‘-’ for the vapor (numerically 
it is more convenient to use different coordinate sys- 
tems on either side of the interface). Diffusion-therm0 
and thermo-diffusive effects have been neglected and 
it is assumed that multi-component mixtures can be 
characterized by a single diffusion coefficient (the 
model can handle non-equal diffusion coefficients, but 
Fick’s law is not valid and the equations change). 
From the Clausius-Clapeyron relation [14], and the 
known pressure gradients, it can be shown that the 
saturation temperature is constant along the interface. 
Hence temperature and mass fraction are only func- 
tions of distance from the interface. 

The far fields (z, -+ m) are assumed to be inviscid 
uniform flows 

u, = a.r , , wi = -2a,z,+C, (6) 

T; = Tii,, mici) = mi(il,. (7) 

At the interface (zV = zc = 0), the conditions are 

UC = n,, - PCW, = PVW” (8) 

T{ = TV = T,, 

dTv 
+kvd=, (10) 

amvCj, amW, 
-PvDvd; +Pw”‘v = pJbaz, -pcu~wc. (11) Y 

Equations (8) represent the no-slip and conservation 
of mass conditions, equations (9) force balances, 
equations (10) continuity of temperature (neglecting 
the interfacial resistance) and conservation of energy, 
and equation (11) conservation of species. Addition- 
ally the thermodynamic relation between the satu- 

ration temperature and interfacial mass fractions is 
required to couple the interface conditions. 

For this analysis, the pure-component saturation 
curves are assumed to obey the simple Clapeyron 
equation [ 141 

h 

T,WP:I- lip,) 1 w’ 
(12) 

Neglecting the specific volume of the liquid (l/p,) 
relative to that of the vapor (I/p,), which is a good 
assumption except near the critical point. assuming 
/I,, is constant, and using the ideal gas law 

P 
-=RT (13) 
P 

yields 

pW 
x- = exp [ - *(lj~.- IIT,,,, . (14) 

VU) 1 
Representing the phase equilibria as 

n,,,,Pv = Y,(T, P)n,,,,Ps,j, (15) 

where y,( T, P) is the activity coefficient [ 111. Therefore 

n,(j) 
-=W~P)exP[-(&Ji, 
%j) 

(16) 

Note that using the activity coefficient in this form is 
mostly for mathematical closure. For condensation in 
the presence of a non-condensable gas. a simpler 
phase equilibrium relation is used. For binary con- 
densation a graphical representation is used. Con- 
servation of moles, mass and Dalton’s law are necess- 
ary for closure 

,f %i) = 1 (17) 

(18) 

(19) 

Introducing the dimensionless quantities (m,,,, are 
already dimensionless) 

24: = u,(via,)-’ ‘, rv: = w,(viai)-“’ 

rf = r(v,/a,)- ’ ‘, z,* = 2, (vi/a,) - ’ ’ 

Ti - Ti, 

” = T,,,,(P,)- Ti, 

the following dimensionless parameters result. 

Fluid mechanical 

(21) 
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Thermal 

Ja,,,, = f 
cp,,l,(Ts,l,(p”) - T,,) 

h “(II) 
, Pr, = z (22) 

where the ‘+’ is for liquid and the ‘-’ for vapor. 

Species 

SC,, m,,,,,, !!!!e !!w Cm, km, 
MCI, y Pi(l) ’ G’ h,,(l, 

h “[ 1 k, ’ R &‘J 
Ti, 

0) 
Ctj)(pv). (23) 

Z-dP”) ’ 7-S,,,(P”) 

The following similarity solutions, which satisfy 
continuity identically, exist 

(24) 

Substitution into the z-direction momentum equa- 
tions, and differentiation with respect to r, yields 

(25) 

which implies that, if P, is continuously differentiable, 
?P,/dr is not a function of z, and can be evaluated 
from the inviscid far field 

P, - P, = 1/2p,(afr’+h,(z)) (26) 

and by equating radial pressure gradients at the inter- 
face (radial pressure gradients can be seen to be equal 
by differentiating equation (9) with respect to r) 

a/la” = (p”lpO’12 (27) 

where pJp( is assumed constant and equal to the inter- 
face value. It is evaluated using the ideal gas law as 

P” P”(l,(P”) n”(l) p P/Cl,V”) -=-- 

PI 
c me,, -. 

P,(I,(P”) m”(I) j= I PdP”) 
(28) 

The transformed momentum and energy equations 
in similarity form become 

(29) 

_2Pr,F,g = d’T: 
’ ‘dz: dzT2 (30) 

where the mixture Prandtl number is defined as 

These are complemented by the species equation 

-24!.!$ = !.3 
-1 z,* (32) 

SC, being treated as a constant. 
Boundary conditions for the above equations are, 

as z approaches infinity 

dF,/dz,* = I. 7-F = 0. m,,,, = ni ,,,,, 

while matching conditions at the interface are 

dF, p, ’ ‘dF, -=- - 
0 d:f p” d:: 

I , 

00 

I 2 
,C, = _ 5 ” F, 

PI L 

(34) 

(35) 

(36) 

1 dnl,,,, 
2F&%,, -w,,J + z d_* 

I f 

’ 4 1 drn,,,, 
- ~ = 0 
SC, ds: 

(38) 

T; = 
Ts-T,, 

T,,,,(P”)- T,, 
(39) 

(33) 

where the mixture specific heat at constant pressure 
and dynamic viscosity are defined as 

(40) 

NUMERICAL SOLUTION 

Of primary importance in this study- is the inter- 
facial condensation rate. An order of magnitude 
estimate of this parameter can be obtained from the 
inviscid pure-component condensation solution [I] 

-F,(O) = Jal(n Pr,)-’ ‘. (42) 

Precise numerical results for multi-component con- 
densation, however, require solution of equations 
(29), (30) and (32) along with far field conditions (33) 
and interface conditions (34)-(39). Additionally the 
thermodynamic relation, equation (16). its auxiliary 
equations (17)-(19) and multi-component mixture 
property relations, equations (28). (31). (40) and (41), 
are required. It is now apparent why zr and zI were 
used. Since one boundary condition is at infinity for 
both the gas mixture and the liquid, and the gas field 
equations are decoupled from the liquid field equa- 
tions (except at the interface), what is physically a 
three-point boundary-value problem can be rep- 
resented mathematically as a two-point boundary- 
value problem (the two boundaries, z: + Z, z(* + cc, 
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merge to simply z* + co, and the interface conditions Once the Fj(z*) are known the energy equations are 
can be treated mathematically as coupled boundary solved. New dimensionless temperatures are intro- 
conditions at z* = 0). duced 

The resulting system of non-linear ordinary differ- 
ential equations has no known closed form solution ; 
therefore it must be solved numerically. It should be 
noted that the general problem of binary con- 
densation with a non-condensable gas is a system of 
seven ordinary differential equations, two of which 
are third order and five are second order. There are 
seven infinity conditions, nine interface conditions 
and eight auxiliary relations. To attempt to blindly 
solve this system would be extremely difficult. Clearly 
a more intelligent approach is necessary. Due to the 
nondimensionalization, the freestream velocity is not 
a parameter in this problem. Basically, after choosing 
the substances and total pressure there are only five 
free parameters. They are the liquid freestream tem- 
perature (or Ja,&, gas freestream temperature 
(Ju,(,,), liquid freestream concentration for the second 
component (m,cz,), vapor freestream concentration 
for the second component (m,& and freestream non- 
condensable gas fraction (m,(p,r). They act as the 
driving potentials and determine the conditions at the 
interface F,(O), micjj(O) and T,. However, to solve the 
problem in this fashion is very difficult. Instead inter- 
face conditions F,(O), T, and dm,(j,/dz,? (for the non- 
condensable gas this is zero) are chosen and the 
driving potentials which yield these conditions are 
determined. Koh [IS] used a similar procedure to 
determine the Jakob number for forced-convective 
condensation onto a flat plate. 

Z-TX 
” = T, - IT;, 

___ = T,? TS(P”) - Ti, 

T,-T,, 

and the energy equation then becomes 

(44) 

-2Pr.F.T.+’ = T’” 1 t * 

with boundary conditions 

(43 

T:(O) = I, T;(S) = 0. (46) 

By using a shooting technique similar to that used 
for the momentum equations, q+‘(O) can be found. 
Knowing T:‘(O), therrnophysical properties and 
using equation (37) allows calculation of Ja,(,, and 
Ju,,,,. Actually there are many combinations of Ju,,,, 

and Ju,,, ) which are possible for a given condensation 
rate. In other words, the condensation rate is not 
solely a function of the liquid subcooling. Large vapor 
superheats can significantly reduce the interfacial 
condensation rate. Finally mjo,(0), dm,,j,(0)/d$’ and 
equations (32) and (38) are used to calculate them,,,,, 
using a simple shooting routine. 

RESULTS 

The first step is to choose the condensable and non- 
condensable substances, the total pressure (P,) and 
corresponding saturation temperature (r,,,,(P,)). All 
dimensionless parameters given by equations (2l)- 
(23). except for Jai(i), PQ,,~ and Tii,/T,,,,(PV) are 
determined. Choosing T, fixes mic,,(0) and, assuming 
all pure-component properties are constant and equal 
to their interface values, allows the mixture properties 
to be determined using equations (28), (3l), (40) and 

(41). Specifying F,(O) allows the momentum equa- 
tions to be solved independent of the energy and 
species equations. 

In order to obtain some understanding of how mix- 
ture concentration alters the interfacial phase equi- 
libria, and hence the interfacial condensation rate. 
condensation in the presence of a non-condensable 
gas will be examined. The particular system studied 
will be the condensation of water vapor which con- 
tains some air. By restricting attention to the air/water 
system, many of the dimensionless parameters given 
in equations (2l)-(23) are fixed. Therefore, their effect 
upon the condensation process cannot be seen. For 
the majority of these parameters, however, the pri- 
mary effect is to alter the thermophysical and trans- 
port properties of the mixture. How this affects the 
interfacial condensation rate was discussed in ref. [ 11. 

The momentum equations are solved first. Once 
F,(O) is specified, they are given by equations (29), 
(33), (34) (36) and 

For the condensation of an atmospheric mixture of 
water vapor and air, in addition to the liquid subcool- 
ing, the freestream or non-condensable gas fraction. 
m v,glor is also very important. The way that the non- 
condensable gas concentration affects the interracial 
condensation rate is more interesting than simply 
affecting the thermophysical properties. By lowering 
the partial pressure of the vapor at the interface, it 
decreases the effective subcooling and hence inhibits 
condensation. The dimensionless parameters for an 
atmospheric water/air system are shown in Table I 
[17]. The thermodynamic relation, equation (l6), is 
simplified in that the liquid mole fraction for water 
and the activity coefficient are both identically 1. This 
is consistent with assuming that air is a non-con- 
densable gas. Also, since the effects of vapor superheat 
have been shown to be small [ 11, it has been neglected. 

F,(O)=- ; 
l/4 

00 ; “*F,(o). (43) 

In order to solve this system a shooting technique was 
used [16]. The equations were first expressed as a 
system of first-order ODES. F;(O) and F;‘(O) were 
guessed, equations (34) and (36) used to calculate 
F”(O) and F:‘(O) and a fourth-order adaptive-step-size 
Runge-Kutta scheme was used to shoot to the infinity 
boundary; normally z* = IO is sufficient. Finally a 
Newton-Raphson technique was used to match the 
infinity conditions, given by equations (33). 

Figure 2 shows both the interfacial non-con- 
densable gas fraction, M,&O), and inter-facial satu- 
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Table 1. Saturated steam air mixture prop- 
erties at atmospheric pressure 

Fluid mechanical 

kH.0 

P’I 

P,“,O(P”) 

PI 

Subcooling 
Pr, 

Superheat 
Prv.H?o 

Non-condensable gas 

SC” 

h 

[ 1 v( 
R r,,(f’v) H~O - 

3.26 x lo-’ 

6.2-1x IO- 

1.75 

0.957 

0.6 

1.608 

1.802 

0.497 

1.373 

13.105 

ration temperature as functions of non-condensable 
gas fraction at infinity, mv.air;c. for F,(O) = - IO-*. As 
can be seen M,.,ir(O) is almost directly related to nt,.,irx. 
In other words, a small freestream non-condensable 
gas fraction produces a much larger interfacial non- 
condensable gas fraction. The exponential relation- 
ship, equation (16), between m,,,i,(0) and r,/r,(P,) 
somewhat dampens the effect upon the interfacial 
saturation temperature. 

Figure 3, however, shows that the subcooling 
necessary to maintain this condensation rate increases 
greatly as the freestream non-condensable gas fraction 
is increased. Also since the slope of the curve is rapidly 
increasing it is seen that for large non-condensable 
gas fractions, slight changes have a dramatic effect 
upon the subcooling required to maintain con- 
densation. 

In some respects, binary condensation is very simi- 
lar to condensation in the presence of a non-con- 
densable gas. In addition to mass diffusion in the 
vapor phase, however, there is mass diffusion in the 
liquid, and additionally the phase equilibrium at the 
interface is more complicated. In a sense, binary con- 
densation is the general case and condensation in the 
presence of a non-condensable gas may be thought of 
as a special case. 

To make things a little more concrete, an atmo- 
spheric methanol-water mixture was chosen to be the 
binary mixture. Their mixture properties are shown 
in Table 2 [17,18]. In lieu of equation (16) the equi- 

1 

m r.oir- 

FIG. 2. The effects of massdiffusion upon interface conditions 
for atmospheric air/stream mixture. 

librium curve shown in Fig. 4, taken from Sparrow 
and Marschall (121, is used to determine the phase 
equilibrium at the interface. 

Conceptually it is easier to think of the less volatile 
component, water, as condensing more rapidly. In 
order to be in steady state in the axisymmetric con- 
figuration the mole fraction of methanol must be 
largest at the interface. Otherwise convection and 
diffusion would both bring methanol vapor toward 
the interface. Since it is not condensing as fast as the 
water it would build up at the interface. This is similar 
to the case where convection brought both the vapor 
and non-condensable gas to the interface, the vapor 
condensed and the non-condensable gas diffused back 

I I I I 

m,..+ 

FIG. 3. Relationship between subcooling and non-con- . _ _ . 
densable arr fiactlon tbr atmosphenc water. 



Table 2. Binary water/methanol mixture properties at atmo- 
spheric pressure 

Fluid mechanical 

PI.H:O 

Subcooling 

Pr(.uIo 

Superheat 

Prv,rt:o 

Binary 

SC, 

4.26x IO-: 

6.24 x lO-4 T,(*C) 

1.75 

0.987 64 

0.6 

0.9646 

SC, 8250 

P<.mclh 
0.8393 

I1/.H*O 

c ,d.rneth 

G.“:O 
0.7463 

FIG. 4. Typical relationship between interface and freestream 
concentrations near a methanol/water condensing interface. 

0.9229 

0.9085 
k C.mah 
k C.H,O 

0.2912 

I .7779 

0.4462 

shown in Figs. 4 and 5. What these figures demon- 
strate, is that the concentration varies throughout the 
momentum boundary layer in the vapor. In the liquid, 
however, the concentration is almost uniform except 
for a very tiny region next to the interface. In other 
words, for such a large liquid Schmidt number, the 
concentration boundary layer is much smaller than 
the momentum boundary layer. 

away from the interface. For the liquid side, the Lewis 
number is very large (k, = a,/D, = 4000). Therefore, 
the diffusive boundary layer is much smaller than the 
thermal boundary layer. The diffusive region is at 
approximately constant temperature equal to the 
interface or saturation temperature. Since con- 
densation is occurring at the interface, the con- 
centration of methanol must be largest there. 

A typical example of a concentration profile is 

2117 

64.1 
0 1 

%mh 

Some typical results were run for i;(O) = - IO-’ 
and are shown in Table 3. The first thing to notice is 
that the condensation rate and actual subcooling are 
intimately related. Practically the same temperature 
difference between the liquid freestream and interface 
produces a given condensation rate independent of 
absolute temperature. The other thing to notice is that 
a given saturation temperature and condensation rate 
can be achieved with many different liquid freestream 
concentrations, while the vapor freestream con- 
centration cannot vary much and the liquid freestream 
temperature is essentially constant. 

05 0 I 5 

2: 2; 

FIG. 5. Concentration profile with m,, = 0.1845, m,, = 0.6312, and 7’,, = 71.23’C. 



2118 F. hl. C~ERNFR and C. L. TIFV 

Table 3. Freestream conditions which yield the same con- 
densation rate for a water/methanol binary mixture 

-F,(O) = IO_-’ 
T*(>C) m,, m,, T,,(C) 

64.1 1.0000 I .oooo 55.87 
72 0.1240 0.8832 64.95 

0.2312 0.8710 64.69 
0.3243 0.8604 64.46 
0.4174 0.8499 64.22 
0.5106 0.8393 63.99 
0.6037 0.8287 63.76 
0.6968 0.8181 63.53 

80 0.0016 0.6535 71.61 
0.1845 0.63 I2 71.23 
0.3674 0.6089 70.84 

88 0.0042 0.430 I 78.69 
0.0400 0.4254 78.62 
0.0757 0.4208 78.55 
0.1651 0.4092 78.37 

96 0.0005 0.1685 86.27 
0.0178 0.1659 86.24 
0.0525 0.1610 86.17 

100 0.0000 0.0000 90.10 

Of course, this should not be too surprising since 
the third term in equation (38) is a couple of orders 
of magnitude larger than the second term. As long as 
there is appreciable condensation then, right at the 
interface, almost all of the mass transport in the liquid 
is due to convection. Since the liquid mass diffusion 
region is small compared with both the momentum 
and thermal boundary layers (the Schmidt and Lewis 
numbers are large), mass diffusion has little influence 
on the velocity and thermal fields. As long as it is 
physically possible, the liquid concentration profile 
can adjust itself without greatly affecting anything 
else. 

In a more general sense, this supports the obser- 
vation [I91 that the unmixed model works well for 
binary film condensation. In the unmixed model there 
is assumed to be no diffusion in the liquid right at the 
interface, consequently the concentration gradient, in 
the liquid, at the interface is zero. The concentration 
changes very rapidly in a tiny region near the interface 
to match the bulk concentration in the liquid phase. 
The boundary-layer region of the axisymmetric model 
can be thought of as this near-interface region. The 
reason why they are so similar is that, due to the high 
liquid Schmidt number, the concentration boundary 
layer is confined to a region so near to the interface 
that it is independent of the liquid velocity field (see 
Figs. 4 and 5). 

Of course since this is a laminar-flow model, the 
mixed-flow model is not expected to work. For tur- 
bulent-film condensation it is often assumed that the 
liquid is so well mixed that the concentration is uni- 
form throughout the liquid. For the axisymmetric 
model, unlike film condensation, the freestream liquid 
concentration is an independent variable. If the liquid 
concentration did not vary, however, this would fix 

the interface temperature, the liquid subcooling and 
hence the interfacial condensation rate. As has been 
shown. however. the interfacial condensation rate is 
not highly dependent on the liquid freestream con- 
centration. 

In demonstrating that for the axisymmetric model, 
and other laminar flow cases, that liquid freestream 
concentration is unimportant, and that liquid inter- 
facial diffusion can be neglected, it has been assumed 
that the condensation is thermally induced. Therefore, 
the concentration gradient in equation (37) can be 
neglected relative to the thermal gradient in the liquid. 
If the subcooling in the liquid is small. however, this 
is no longer true. In fact, if Ju,/Pr is small enough, 
relative to I/SC,, phase change is driven by con- 
centration gradients and not by thermal gradients. In 
this case. the concentration gradients in the liquid are 
no longer negligible and freestream liquid con- 
centration is important. This effect has been noted by 
other investigators [19,20]. and is w-h>- Peterson et ul. 
[I91 found that neither the mixed or unmixed model 
worked very Lvell for modeling the adiabatic section 
of their binary thermosyphon. 

In order to simplify things some\< hat the case 
where the concentration does not var! in the liquid 

(d+.meth d:;C = 0) is examined. This would be one 
possible solution for methanol-water (the others 
would be similar except for the co.ncentration profile 
in the liquid) and the only solution for an infinite 
Schmidt number. 

These results are shown in Fig. 6. Sote that the 
same condensation rate can be achieved with many 
different combinations of liquid freestream tem- 
perature (or saturation temperature) and freestream 
vapor concentration. Also the effects of changing 
either parameter can be seen from this figure. Basically 
anything which increases the actual subcooling 
increases the condensation rate. Lowering the liquid 
freestream temperature will, therefore. increase the 

WC) 

m..nnh- 

FIG. 6. Relationship between freestream vapor concentration 
and saturation and liquid freestream temperatures. 
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condensation rate. Decreasing the freestream mass 
fraction of methanol will tend to raise the saturation 
temperature, increase the subcooling, and increase the 
condensation rate. 

CONCLUSIONS 

In this work a simple axisymmetric model is used 
to study multi-component interfacial condensation. A 
one-dimensional system of equations is solved nu- 
merically. Of special interest is how interfacial mass 
and momentum balances affect the velocity and tem- 
perature fields which interact with the interfacial 
phase equilibrium to affect the interfacial conden- 
sation rate. 

Previously, interfacial mass and energy transport 
have been studied for pure-component condensation. 
It had been determined how the vapor alters the vel- 
ocity field in the liquid, changes the effective liquid 
subcooling, and hence alters the interfacial con- 
densation rate. The purpose of this work was to exam- 
ine how the presence of more than one fluid com- 
ponent alters the condensation rate. It accomplishes 
this by creating concentration gradients in the fluids 
and by altering the interfacial thermodynamics and 
phase equilibrium. 

The presence of a non-condensable gas in the vapor 
significantly alters the relationship between the liquid 
subcooling and the condensation rate. By lowering the 
interfacial saturation temperature, a non-condensable 
gas significantly reduces condensation. For binary 
condensation, the freestream vapor concentration is 
very important. The higher the concentration of the 
more volatile component, the lower is the saturation 
temperature and effective subcooling. Hence higher 
concentrations of the more volatile component tend 
to inhibit condensation. Also it is shown why, for 
laminar liquid flow, the unmixed-flow model can be 
used to greatly simplify the interfacial phase equi- 
libria. 
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CONDENSATION INTERFACIALE DANS LES MELANGES DE COMPOSANTS 

Rbtun&On emploie un modele simple axisymetrique laminaire pour etudier la condensation de melanges. 
Pour inclure l’equilibre complexe des phases dans cette condensation a plusieurs composants, on considere 
les taux de contraintes interfaciales, le transfert de chaleur et de masse. On montre qu’un gaz incondensable 
reduit sensiblement le flux interfacial de condensation. Pour une condensation binaire, la concentration de 
la vapeur en tcoulement libre est importante. Des concentrations plus ilevbs du composant le plus volatil 

tend g inhiber la condensation. 



F. M. GERNER and C. L. TIEN 

MEHRKOMPOSENTEN-GRENZFL;iCHENKONDENSATlON 

Zusammenfassung-In dieser Arbeit wird ein einfaches laminares achsensymmetrisches Model1 zur Cnter- 
suchung der Mehrkomponenten-Kondensation verwendet. Zusitzlich zu dem mit der Kondensation von 
Mehrkomponenten-Gemischen verbundenen komplizierten Phasengleichgewicht werden dir Schub- 
spannung an der Phasengrenze sowie der Staff- und Energietransport betrachtet. Es wird gezeigt. dal3 ein 
nichtkondensierbares Gas den Kondensationsstrom an der Phasengrenze deutlich vermindert. Im Falle der 
Kondensation binsrer Gem&he ist die Konzentration der ungesttirten Striimung sehr wichtig. HGhere 

Anteile der leichter fliichtigen Komponente fiihren zu einer Behinderung der Kondensation. 

MHOI-OKOMIIOHEHTHAR KOHflEHCALUiI HA MEX0A3HOR I-PAHAUE 

Am~~&xa hiccneaOnamtx huiororoMnokteHToi3 ItowekuzautiH npweHneTcn npocran oceciiMM(cT- 
pHIHE MOiWlb. Hapany CO CJlOIHblMH COCTORHHRMH +330BOrO PaBHOBeCHn, ~pWKTepHbSiSi JLW MHO- 
~OKOMllOHeHTHOii KoiiACiiCaUkI& )'WTblBUOTCSl TatSiCe KaC8TeJlbHOe HZIIlpSZiCeHHe H I’lePeHOC MaCCbl H 

3HePTHH Ha MeYl@3HOii ~aHHlJC. ~OKti3ilHO, ‘IT0 HeKO~eHCHp)‘lOllUffiC~ Ta3 BbI3blBWT QUZCT~HHOC 

yMeHbLueHHe cropocru KoHJaeHtzum Ha M~@~LWOP rpaewe. BZUCHLJM @3KTOpOM KOHLICHCaUHH 

6iniapoii CMCCH lBJl%TQl KOHueHTpWlin napa B CB06OAHOM nOTOKe. npH BblCOKHX KOHUCHTP~X 
6onee JleTy’lWO LOMllOHeHTa Ha6monae’rcn TeWeHUHR I( IlOlXaBJleHHMJ KOHJlCHCiUIHH. 


