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Abstract—This paper employs a simple laminar axisymmetric model to study multi-component conden-

sation. In addition to including the complex phase equilibria inherent with multi-component condensation ;

interfacial shear stress. mass and energy transport are also considered. It is demonstrated that a non-

condensable gas significantly reduces the interfacial condensation rate. For binary condensation, the

freestream vapor concentration is very important. Higher concentrations of the more volatile component
tend to inhibit condensation.

INTRODUCTION

THis WORK analyzes the interfacial mass and energy
transport occurring at the interface between the vapor
and liquid phases of a multi-component mixture. It
examines the condensation taking place on the surface
of a subcooled liquid mixture, when there is sub-
surface liquid motion. The geometry for this study is
identical to the direct-contact forced-convective con-
densation above a circulating liquid pool used to
analyze the pressurizer of a nuclear power plant [1].
Since the interactions between interfacial forces and
interfacial mass fluxes are similar for all vapor-liquid
interfaces, the model can be used to better understand
the influence of convection near vapor-liquid inter-
faces in other geometries. For example, binary film
condensation on flat plates and inside or outside tubes
all exhibit very similar interfacial behavior.

While other investigators have examined interfacial
pool condensation [1-6], none of their results have
included multi-component condensation. Also there
have been some studies of film condensation in the
presence of a non-condensable gas [7-9], and binary
film condensation [10-13]. None of these studies,
however, have fully accounted for the complex
dynamic coupling occurring at the vapor-liquid inter-
face. In particular, they do not match the vapor and
liquid shear stresses at the interface. For a relatively
stagnant vapor, this is not necessary. For rapidly mov-
ing vapors, however, the subsequent high interfacial
shear stress does affect the interfacial condensation
rate. This work provides a simple, yet rigorous, model
to demonstrate clearly how interfacial phenomena,
such as interfacial shear stress and condensation mass
flux, affect the velocity fields, interact with the com-
plex phase equilibria, and hence affect the interfacial
mass and energy transport.
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The model to be analyzed is graphically represented
in Fig. 1. A subcooled liquid flows axisymmetrically
toward a flat gas-liquid interface. In general, the
liquid is a binary mixture and the gas is a mixture of
a superheated binary vapor and a non-condensable
gas (the model will work equally well for more com-
ponents). To satisfy the no-slip and force balance
conditions at the interface the gas mixture must also
be in motion. In order to simplify the formulation and
to focus attention on the interface, steady-state
axisymmetric laminar stagnation flows are assumed
to exist in both the liquid and the mixture. Inviscid
flow occurs in both fluids except for thin boundary
layers on either side of the interface. By introducing
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FiG. 1. Axisymmetric interfacial transport model.
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a stagnation parameter

C, constant, equation (6)

C,  specific heat at constant pressure

D binary diffusion coefficient

F dimensionless similarity variable,
equation (24)

g gravitational acceleration
h,,  latent heat of vaporization
h(z)  z-dependence of pressure, equation (26)

Ja Jakob number, equation (22)
k thermal conductivity

m mass fraction

M molecular weight

n mole fraction

P pressure

Pr Prandtl number, equation (22)
r radial coordinate

R specific gas constant

Sc Schmidt number, v/D

T temperature

u radial or streamwise velocity
v cross-stream velocity

w axial velocity

X streamwise coordinate

y cross-stream coordinate

NOMENCLATURE

ol axial coordinate.

Greek symbols

et thermal diffusivity

” activity coefficient, equation (15)
u dynamic viscosity

v kinematic viscosity

P density.

Subscripts and superscripts

C condensable substance

g non-condensable gas

i forv

J substance index

I3 liquid

o stagnation

) number of substances

S saturation

v vapor

w wall

P’ infinity

* dimensionless, equation (20)
+ alternate nondimensionalization,

equation (44)
differentiation w.r.t. =*,

appropriate similarity variables, the governing equa-
tions can be transformed into a one-dimensional sys-
tem of mathematical equations. Therefore, boundary
conditions are required only in the direction normal
to the interface. A numerical technique is employed
to solve this system of equations.

Previously, the axisymmetric laminar-flow model
has been used to study pure-component condensation.
The effects of interfacial forces, subcooling of the
liquid, and superheating of the vapor have all been
examined for pure-component condensation [1].
Some of these results will be used to simplify the
analysis of multi-component condensation.

The next section outlines the mathematical for-
mulation. After introducing the numerical procedure
used, multi-component condensation is examined.
For multi-component condensation, the physics and
mathematics become slightly more complicated than
for pure-component condensation. For multi-com-
ponent condensation the phase equilibria at the inter-
face is very important. Two cases are studied: con-
densation when there is a non-condensable gas present
in the vapor, and condensation of a binary mixture.
A non-condensable gas tends to accumulate at the
interface as the vapor condenses. This offers a
diffusion barrier to the vapor which inhibits con-
densation. Another way to think of this is that large
concentrations of a non-condensable gas lower the
partial vapor pressure and saturation temperature.

Hence the subcooling is effectively lowered. It is then
shown that binary condensation is primarily con-
trolled by thermal transport in the liquid and mass
transport in the vapor. It is interesting, that by altering
the vapor concentrations, the same condensation rate
can be achieved using different liquid temperatures.

Before introducing the model it is important to re-
emphasize that while this work closely models the
direct contact condensation above a circulating liquid
pool, it has much wider relevance. The same inter-
action between interfacial forces and interfacial mass
fluxes occur near all vapor-liquid condensation inter-
faces. The reason is that interfacial heat and mass
transfer is a very local phenomenon. Of course for
other applications, such as binary laminar-film con-
densation, the non-interface boundary conditions are
different. But the relationship between the dynamics
and mass and energy transfer near the interface is very
similar.

FORMULATION

The following equations governing conservation of
mass, momentum, energy and species are for constant
density and constant transport properties of the pure
substances :

Cu; u; Ew;
—+—+—=0 (1)
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where, in the z-direction momentum equation, the ‘*+°’
is for the liquid and the ‘ -’ for the vapor (numerically
it is more convenient to use different coordinate sys-
tems on either side of the interface). Diffusion-thermo
and thermo-diffusive effects have been neglected and
it is assumed that multi-component mixtures can be
characterized by a single diffusion coefficient (the
model can handle non-equal diffusion coefficients, but
Fick’s law is not valid and the equations change).
From the Clausius—Clapeyron relation [14], and the
known pressure gradients, it can be shown that the
saturation temperature is constant along the interface.
Hence temperature and mass fraction are only func-
tions of distance from the interface.

The far fields (z; - 20) are assumed to be inviscid
uniform flows

U =apr,
I=T.,

At the interface (z, = z, = 0), the conditions are

w; = =2a;;+C, (6)

My = My N

Uy = Uy, = PeWy=pW, ®)
ow, ow
P2, 2 = p 2y, L
4 He 62/ H azv

cw, Ou, éw, Cu,
~u S ) =S ) o
”l< cr + 62,) # <5r + o.n) ©

T/ = Tv = Tsy
daT 4 omy,;
—k,?{l = jgl <Pz(j)WI_PIDt _é';:_l)>hvl(f)
dT,
+k\,a—zj (10)
om,; omy;

—p.D, 6_"’ +puyWe = p.D; a:m ~pejywe- (11
‘V <t

Equations (8) represent the no-slip and conservation
of mass conditions, equations (9) force balances,
equations (10) continuity of temperature (neglecting
the interfacial resistance) and conservation of energy,
and equation (11) conservation of species. Addition-
ally the thermodynamic relation between the satu-
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ration temperature and interfacial mass fractions is
required to couple the interface conditions.

For this analysis, the pure-component saturation
curves are assumed to obey the simple Clapeyron
equation [14]

(), =[]
dT; W) B T,(1/p,—1/p,) (j).

Neglecting the specific volume of the liquid (1/p,)
relative to that of the vapor (1/p,), which is a good
assumption except near the critical point, assuming
h,, is constant, and using the ideal gas law

P

—=RT
P

(12

(13
yields

Ps(j) [ hV/(f)
- =exp| — — (T, =T, (P) | (14)
Pv Rv(j) (/)

Representing the phase equilibria as

ny Py =7 ,(T, P)n, Py, (15)

where y (T, P) is the activity coefficient [11]. Therefore
By h,

—= =T, P)ex [—<~———>

Ny g P R, T(P) ()

Ts(jj(Pv) Ts(l)(Pv) _
x (Ts(.)(m T, 1)] (16)

Note that using the activity coefficient in this form is
mostly for mathematical closure. For condensation in
the presence of a non-condensable gas. a simpler
phase equilibrium relation is used. For binary con-
densation a graphical representation is used. Con-
servation of moles, mass and Dalton’s law are necess-
ary for closure

P
=1 (17)
iz

M;
iy 37
M
My = — AI/, (18)
Ry jy >
/Z:l (J)Ml
p
.Zl Py = P,. (19)
J=

Introducing the dimensionless quantities (m,(;, are
already dimensionless)

ut = ui(viai)—l % wk = ""i("'iai)_r2
o= zi(vi/ai)—) :

Ti'_Tix

rt=r(vfa)"",

T = To(P)~T. (20)
the following dimensionless parameters result.
Fluid mechanical
By pv(l)(Pv). Q1)

.
Heay
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Thermal

Tw)  pp = ()

Lich)

sz(l)(Ts(l)(Pv) -

hv{(ll

Jag, = £

where the *+ is for liquid and the *—’ for vapor.

Species
SCu Miyxs MU); m’ Cpi(j), hWU)
My Cpi(l) hv/(l)
k;'(/l [ hv( ] 7-}00 TSU)(PV) (23)
k, " LR.T,(P) |y Tury(Py)’ Tun(P.)

The following similarity solutions, which satisfy
continuity identically, exist
dFi(z})

— p¥ ! IS - -
ul'* =r dz* ’ "i}.l = _ZE(-i*)*
~i

(24

Substitution into the z-direction momentum equa-
tions, and differentiation with respect to r, yields

op,
or 0z,

=0 (25)

which implies that, if P; is continuously differentiable,
&P,/ér is not a function of z; and can be evaluated
from the inviscid far field

P,—P; = 1/2p,(alr* +h{(z)) (26)

and by equating radial pressure gradients at the inter-
face (radial pressure gradients can be seen to be equal
by differentiating equation (9) with respect to r)
asla, = (p./p)"? @7
where p./p, is assumed constant and equal to the inter-
face value. It is evaluated using the ideal gas law as
Py - &ﬂ)(—Pv) ) <& o pey(Py)
Pr P/m(Pv) myay i o Pm')(Pv)'

The transformed momentum and energy equations
in similarity form become

28)

dF; d’F, d*F,
(d-,) 2F,d *2 H-F (29)
dr*  d°TF
—2Pr; Fi—— i dz,-*2 (30)
where the mixture Prandtl number is defined as
JJ Uy, P Cou;
(Z Ry ﬂ)( T CPU’>
Pr; J=t Ky \j=1 2i(1)
= . .G
Pry, Z k:(/)
j=1t 5 )kt(l)
These are complemented by the species equation
dm, d’m,;
—25¢, F, d~,:) dzi,‘;’ (32)

Sc; being treated as a constant.
Boundary conditions for the above equations are,
as z approaches infinity

M. GerNER and C. L. Tiex

dlri/d:x* = l' T:* = 0-, My = My, (33)
while matching conditions at the interface are
dF, (p,\ *dF,
== 3
d-* <pv> ¥ (34)
3 1:2
V) o
P U,
d*F, W\ 2 14 4°F,
=B ) = e
dz, I p,/) d:z!

C, Ja,, dT*

2 1 dm h,
g (-M/U)F/ SC/ d-'{/::)> -

Cyqy Pr, dz* by
(o) () e eE o
Pe i, vam P’ dzF
1 dm
2F,(my — mvm)‘*‘ d-/:"j)
1.4
oy 1 dm,,
+ = =0 (38
(#/) <P/) SC d-? (38)
* _ Ts—Tif, (39)
! Ts([i(Pv)_T'ix

where the mixture specific heat at constant pressure
and dynamic viscosity are defined as

Pl(/»
m, (40)
C/u(l) jg v C pitl)
r
Hy
2 My &
& Ky j== faatl (41)
e Heqy Z Heiy
R

j=1 Heqy

NUMERICAL SOLUTION

Of primary importance in this study is the inter-
facial condensation rate. An order of magnitude
estimate of this parameter can be obtained from the
inviscid pure-component condensation solution [1]

—F,(0) = Ja,(n Pr,)""'" 42)

Precise numerical results for multi-component con-
densation, however, require solution of equations
(29), (30) and (32) along with far field conditions (33)
and interface conditions (34)-(39). Additionally the
thermodynamic relation, equation {16). its auxiliary
equations (17)-(19) and multi-component mixture
property relations, equations (28), (31). (40) and (41),
are required. It is now apparent why -, and z, were
used. Since one boundary condition is at infinity for
both the gas mixture and the liquid, and the gas field
equations are decoupled from the liquid field equa-
tions (except at the interface), what is physically a
three-point boundary-value problem can be rep-
resented mathematically as a two-point boundary-
value problem (the two boundaries, z¥ — x, z* = o,
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can be treated mathematically as
conditions at =* = 0).

The resulting system of non-linear ordinary differ-
ential equations has no known closed form solution ;
therefore it must be solved numerically. It should be
noted that the general problem of binary con-
densation with a non-condensable gas is a system of
seven ordinary differential equations, two of which
are third order and five are second order. There are
seven infinity conditions, nine interface conditions
and eight auxiliary relations. To attempt to blindly

solve this system would be extremely difficult. Clearly
Due to the

asue WO Gl

[«]

oupled boundary

a more intellicent annroach is necessary.,

& 2ROIL 2RCINSERN appiOatil 15 LClessar

nondnmensnonallzatlon, the freestream velocity is not
a parameter in this problem. Basically, after choosing
the substances and total pressure there are only five
free parameters. They are the liquid freestream tem-
perature (or Ja,q), gas freestream temperature
(Ja,()), liquid freestream concentration for the second
component (m,), vapor freestream concentration

d fresst -
for the second compenent {m,,)) and {reestream non-

condensable gas fraction (m,,.). They act as the
driving potentials and determine the conditions at the
interface F,(0), m,;,(0) and T,. However, to solve the
problem in this fashion is very difficult. Instead inter-
face conditions F,(0), T, and dm,;/dz* (for the non-
condensable gas this is zero) are chosen and the
driving potentials which yield these conditions are

Kah 18] wicad a gimilas smemasd
ULl [iJ] udlu a Siimniar PIU\.CUHIC I.U

datarminad
determined.

determine the Jakob number for forced-convective
condensation onto a flat plate.

The first step is to choose the condensable and non-
condensable substances, the total pressure (P,) and
corresponding saturation temperature (7,,,(P,)). All
dimensionless parameters given by equations (21)-
(23), except for Ja,(,,, s and T,x/Ts(,,(P) are
determined. Choosing 7, fixes I",(J)\U) and, assuming
all pure-component properties are constant and equal
to their interface values, allows the mixture properties
to be determined using equations (28), (31), (40) and
(41). Specifying F,(0) allows the momentum equa-

nt of t!\g enerov and

volo lAA\avyvAA\-v 10 O WL LAligy adll

tions to be solved indenende

species equations.

The momentum equations are solved first. Once
F,(0) is specified, they are given by equations (29),
(33), (34), (36) and

CoR

In order to solve this system a shooting technique was

used [16]. The equations were first expressed as a

E' (N and YO wara
V) anag r,\wj; werc

F.0) = (43)

ctaina gt _~esdan Nha

5y3lclll Uf ISR 18,0 001 UULQ
guessed, equations (34) and (36) used to calculate
F(0) and £ (0) and a fourth-order adaptive-step-size
Runge-Kutta scheme was used to shoot to the infinity
boundary; normally z* = 10 is sufficient. Finally a
Newton—-Raphson technique was used to match the
infinity conditions, given by equations (33).
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solved. New dimensionless temperatures are intro-
duced

tions are

re S
and the energy equation then becomes
=2PrFT =T 43)
with boundary conditions
@ =1 Tr(x)=0 (46)

By using a shooting technique similar to that used
for the momentum equations, 7;7'(0) can be found.
Knowing T7;’(0), thermophysical properties and
using equation (37) allows calculation of Ja,, and
Ja,,. Actually there are many combinations of Ja,,
and Ja,,, which are possible for a given condensation
rate. In other words, the condensation rate is not
solely a function of the liquid subcooling. Large vapor
superheats can significantly reduce the interfacial
condensation rate. Finally m;;,(0), dm,,,(0)/dz* and
equations (32) and (38) are used to calculate the m;;, .

using a simple shooting routine.

RESULTS

In order to obtain some understanding of how mix-

ture concentration alters the interfacial phase equi-
libria

4004, &0 [OCHLC 1)

and hence the interfacial condensation rate

dildialliar Lonaliisauin iass,

condensation in the presence of a non-condensable
gas will be examined. The particular system studied
wiil be the condensation of water vapor which con-
tains some air. By restricting attentiori to the air/water
system, many of the dimensionless parameters given
in equations (21)—(23) are fixed. Therefore, their effect
upon the condensation process cannot be seen. For

the mainrty af thaca naramatare hawasver tha nri.
€ major.dy Oi 1nese parameiers, aowever, ia€ pn

mary effect is to alter the thermophysical and trans-
port properties of the mixture. How this affects the
interfacial condensation rate was discussed in ref. [1].
For the condensation of an atmospheric mixture of
water vapor and air, in addition to the liquid subcool-
ing, the freestream or non-condensable gas fraction.
m, ., is also very important. The way that the non-
condensable gas concentration affects the interfacial
condensation rate is more interesting than simply
affecting the thermophysical properties. By lowering
the partial pressure of the vapor at the interface, it
decreases the effective subcooling and hence inhibits
condensation. The dimensionless parameters for an
atmospheric water/air system are shown in Table 1
[17]. The thermodynamic relation, equation (16), i
simplified in that the liquid mole fraction for water
and the activity coefficient are both identically 1. This
is consistent with assuming that air is a non-con-
densable gas. Also, since the effects of vapor superheat
have been shown to be small [1], it has been neglected.
Figure 2 shows both the interfacial non-con-
densable gas fraction, m,,;;(0), and interfacial satu-
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Table 1. Saturated steam air mixture prop-
erties at atmospheric pressure

Fluid mechanical

HvH0

426x%x10°°
He
w,0(P)
Pummol?y) 6.24x 10"
Pe
Subcooling
Pr, 1.75
Superheat
Prono 0.987
Non-condensable gas
Se, 0.6
Mysn 1.608
MV,H:O ’
a2 1.802
Hop,0
S 0.497
va.uzo
ki
L 1.273
kv,H:O
[ b 13.105
R.Tal(P) juo ’

ration temperature as functions of non-condensable
gas fraction at infinity, m, ;.. for F,(0) = —1072 As
can be seen m, ,; (0) is almost directly related to m, ;.. .
In other words, a small freestream non-condensable
gas fraction produces a much larger interfacial non-
condensable gas fraction. The exponential relation-
ship, equation (16), between m, . (0) and 7,/T,(P,)
somewhat dampens the effect upon the interfacial
saturation temperature.

Figure 3, however, shows that the subcooling
necessary to maintain this condensation rate increases
greatly as the freestream non-condensable gas fraction
is increased. Also since the slope of the curve is rapidly
increasing it is seen that for large non-condensable
gas fractions, slight changes have a dramatic effect
upon the subcooling required to maintain con-
densation.

In some respects, binary condensation is very simi-
lar to condensation in the presence of a non-con-
densable gas. In addition to mass diffusion in the
vapor phase, however, there is mass diffusion in the
liquid, and additionally the phase equilibrium at the
interface is more complicated. In a sense, binary con-
densation is the general case and condensation in the
presence of a non-condensable gas may be thought of
as a special case.

To make things a little more concrete, an atmo-
spheric methanol-water mixture was chosen to be the
binary mixture. Their mixture properties are shown
in Table 2 {17, 18]. In lieu of equation (16) the equi-

F. M. Ger~er and C. L. TN

T, TS
T(P,)
0.5~
mv.m‘r(o)
c I
0 0.5 1
My giroe

F1G. 2. The effects of mass diffusion upon interface conditions
for atmospheric air/stream mixture.

librium curve shown in Fig. 4, taken from Sparrow
and Marschall [12], is used to determine the phase
equilibrium at the interface.

Conceptually it is easier to think of the less volatile
component, water, as condensing more rapidly. In
order to be in steady state in the axisymmetric con-
figuration the mole fraction of methanol must be
largest at the interface. Otherwise convection and
diffusion would both bring methanol vapor toward
the interface. Since it is not condensing as fast as the
water it would build up at the interface. This is similar
to the case where convection brought both the vapor
and non-condensable gas to the interface, the vapor
condensed and the non-condensable gas diffused back

Ja,

eU I 1 { |

My gires

FiG. 3. Relationship between subcooling and non-con-
densable air fraction for atmospheric water.
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Table 2. Binary water/methanol mixture properties at atmo-
spheric pressure

Fluid mechanical

Heno

426x10"*
Heno
Puno(P)
TR 624x107t
Pruo
Subcooling
Pr, 0 1.75
Superheat
Prono 0.987
Binary
Se. 0.6 Sc, 8250
Bymetn 0.9646 Ee.metn 0.8393
HoH0 Heno
va meth CPl meth
L2 0.9229 0= 0.7463
Cpno Cp/.H:O
k.
Sumeth 0.9085 Kz men 0.2912
koo keno
‘»’ meth
— 1.7779
Mo
ey 0.4462
hv/.H:O

away from the interface. For the liquid side, the Lewis
number is very large (Le, = a,/D, = 4000). Therefore,
the diffusive boundary layer is much smaller than the
thermal boundary layer. The diffusive region is at
approximately constant temperature equal to the
interface or saturation temperature. Since con-
densation is occurring at the interface, the con-
centration of methanol must be largest there.

A typical example of a concentration profile is
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100
Vapor
Fresstresa
Liquid
0
TL0 - - Irterface. - —
Freestrean
64 ~ 64.7
0 1
Bech

FiG. 4. Typical relationship between interface and freestream
concentrations near a methanol/water condensing intetface.

shown in Figs. 4 and 5. What these figures demon-
strate, is that the concentration varies throughout the
momentum boundary layer in the vapor. In the liquid,
however, the concentration is almost uniform except
for a very tiny region next to the interface. In other
words, for such a large liquid Schmidt number, the
concentration boundary layer is much smaller than
the momentum boundary layer.

Some typical results were run for F,(0) = —107?
and are shown in Table 3. The first thing to notice is
that the condensation rate and actual subcooling are
intimately related. Practically the same temperature
difference between the liquid freestream and interface
produces a given condensation rate independent of
absolute temperature. The other thing to notice is that
a given saturation temperature and condensation rate
can be achieved with many different liquid freestream
concentrations, while the vapor freestream con-
centration cannot vary much and the liquid freestream
temperature is essentially constant.

i
Mypern
0.5(—
Liquid Vapor
i
% 0 5

FiG. 5. Concentration profile with m,, = 0.1845, m,, = 0.6312, and 7,,, = 71.23°C.
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Table 3. Freestream conditions which yield the same con-
densation rate for a water/methanol binary mixture

—F0)=10""

T,(C) m. m,, T,.(°0)
64.7 1.0000 1.0000 55.87
72 0.1240 0.8832 64.95

0.2312 0.8710 64.69
0.3243 0.8604 64.46
04174 0.8499 64.22
0.5106 0.8393 63.99
0.6037 0.8287 63.76
0.6968 0.8181 63.53
80 0.0016 0.6535 71.61
0.1845 0.6312 71.23
0.3674 0.6089 70.84
88 0.0042 0.4301 78.69
0.0400 0.4254 78.62
0.0757 0.4208 78.55
0.1651 0.4092 78.37
96 0.0005 0.1685 86.27
0.0178 0.1659 86.24
0.0525 0.1610 86.17
100 0.0000 0.0000 90.10

Of course, this should not be too surprising since
the third term in equation (38) is a couple of orders
of magnitude larger than the second term. As long as
there is appreciable condensation then, right at the
interface, almost all of the mass transport in the liquid
is due to convection. Since the liquid mass diffusion
region is small compared with both the momentum
and thermal boundary layers (the Schmidt and Lewis
numbers are large), mass diffusion has little influence
on the velocity and thermal fields. As long as it is
physically possible, the liquid concentration profile
can adjust itself without greatly affecting anything
else.

In a more general sense, this supports the obser-
vation [19] that the unmixed model works well for
binary film condensation. In the unmixed model there
is assumed to be no diffusion in the liquid right at the
interface, consequently the concentration gradient, in
the liquid, at the interface is zero. The concentration
changes very rapidly in a tiny region near the interface
to match the bulk concentration in the liquid phase.
The boundary-layer region of the axisymmetric model
can be thought of as this near-interface region. The
reason why they are so similar is that, due to the high
liquid Schmidt number, the concentration boundary
layer is confined to a region so near to the interface
that it is independent of the liquid velocity field (see
Figs. 4 and $5).

Of course since this is a laminar-flow model, the
mixed-flow model is not expected to work. For tur-
bulent-film condensation it is often assumed that the
liquid is so well mixed that the concentration is uni-
form throughout the liquid. For the axisymmetric
model, unlike film condensation, the freestream liquid
concentration is an independent variable. If the liquid
concentration did not vary, however, this would fix

F. M. Ger~erR and C. L. TN

the interface temperature, the liquid subcooling and
hence the interfacial condensation rate. As has been
shown. however, the interfacial condensation rate is
not highly dependent on the liquid freestream con-
centration.

In demonstrating that for the axisymmetric model,
and other laminar flow cases, that liquid freestream
concentration is unimportant, and that liquid inter-
facial diffusion can be neglected, it has been assumed
that the condensation is thermally induced. Therefore,
the concentration gradient in equation (37) can be
neglected relative to the thermal gradient in the liquid.
If the subcooling in the liquid is small. however, this
is no longer true. In fact, if Ja,/Pr is small enough,
relative to 1/Sc,, phase change is driven by con-
centration gradients and not by thermal gradients. In
this case. the concentration gradients in the liquid are
no longer negligible and freestream liquid con-
centration is important. This effect has been noted by
other investigators [19, 20]. and is why Peterson et al.
(19] found that neither the mixed or unmixed model
worked very well for modeling the adiabatic section
of their binary thermosyphon.

In order to simplify things somewhat the case
where the concentration does not vary in the liquid
(dm, e 'd=* = 0) is examined. This would be one
possible solution for methanol-water (the others
would be similar except for the concentration profile
in the liquid) and the only solution for an infinite
Schmidt number.

These results are shown in Fig. 6. Note that the
same condensation rate can be achieved with many
different combinations of liquid freestream tem-
perature (or saturation temperature) and freestream
vapor concentration. Also the effects of changing
either parameter can be seen from this figure. Basically
anything which increases the actual subcooling
increases the condensation rate. Lowering the liquid
freestream temperature will, therefore. increase the

T(°C)

i
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Fi1G. 6. Relationship between freestream vapor concentration
and saturation and liquid freestream temperatures.
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condensation rate. Decreasing the freestream mass
fraction of methanol will tend to raise the saturation
temperature, increase the subcooling, and increase the
condensation rate.

CONCLUSIONS

In this work a simple axisymmetric model is used
to study multi-component interfacial condensation. A
one-dimensional system of equations is solved nu-
merically. Of special interest is how interfacial mass
and momentum balances affect the velocity and tem-
perature fields which interact with the interfacial
phase equilibrium to affect the interfacial conden-
sation rate.

Previously, interfacial mass and energy transport
have been studied for pure-component condensation.
It had been determined how the vapor alters the vel-
ocity field in the liquid, changes the effective liquid
subcooling, and hence alters the interfacial con-
densation rate. The purpose of this work was to exam-
ine how the presence of more than one fluid com-
ponent alters the condensation rate. It accomplishes
this by creating concentration gradients in the fluids
and by altering the interfacial thermodynamics and
phase equilibrium.

The presence of a non-condensable gas in the vapor
significantly alters the relationship between the liquid
subcooling and the condensation rate. By lowering the
interfacial saturation temperature, a non-condensable
gas significantly reduces condensation. For binary
condensation, the freestream vapor concentration is
very important. The higher the concentration of the
more volatile component, the lower is the saturation
temperature and effective subcooling. Hence higher
concentrations of the more volatile component tend
to inhibit condensation. Also it is shown why, for
laminar liquid flow, the unmixed-flow model can be
used to greatly simplify the interfacial phase equi-
libria.
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Chap. 7.

CONDENSATION INTERFACIALE DANS LES MELANGES DE COMPOSANTS

Résumé—On emploie un modéle simple axisymétrique laminaire pour étudier la condensation de mélanges.

Pour inclure I’équilibre complexe des phases dans cette condensation & plusieurs composants, on considére

les taux de contraintes interfaciales, le transfert de chaleur et de masse. On montre qu’un gaz incondensable

réduit sensiblement le flux interfacial de condensation. Pour une condensation binaire, la concentration de

la vapeur en écoulement libre est importante. Des concentrations plus élevées du composant le plus volatil
tend 4 inhiber la condensation.
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MEHRKOMPONENTEN-GRENZFLACHENKONDENSATION

Zusammenfassung—In dieser Arbeit wird ein einfaches laminares achsensymmetrisches Modell zur Unter-
suchung der Mehrkomponenten-Kondensation verwendet. Zusitzlich zu dem mit der Kondensation von
Mehrkomponenten-Gemischen verbundenen komplizierten Phasengleichgewicht werden die Schub-
spannung an der Phasengrenze sowie der Stoff- und Energietransport betrachtet. Es wird gezeigt. daB ein
nichtkondensierbares Gas den Kondensationsstrom an der Phasengrenze deutlich vermindert. Im Falle der
Kondensation bindrer Gemische ist die Konzentration der ungestdrten Stromung sehr wichtig. Hohere
Anteile der leichter fliichtigen Komponente fiihren zu einer Behinderung der Kondensation.

MHOTOKOMITOHEHTHAS KOHAEHCALIUS HA MEX®A3HON FPAHHLIE

Asnoraims—/{1s8 KCCIENOBAaHHA MHOFOKOMIIOHEHTOH KOHACHCAUHH MPHMEHAETC MNPOCTaR OCECHMMET-

puvHas Moaens, Hapany co C/OXHBIMH COCTORHHAMH ($230B0ro pPaBHOBECHS, XaPaKTEPHLIMHU L1 MHO-

FOKOMIOHEHTHOH KOHICHCAUMH, YYHTHIBAIOTCH TAKkKe KAaCaTEJIbHOC HANPAKCHHC H NMEPEHOC MAcCHl M

IHepruM Ha Mexda3sHoii rpannue. [ToxasaHo, 4TO HEKOHACHCHPYIOIMACA ra3s BLI3BIBACT CYILECTBEHHOC

YMEHBIUCHHE CKOPOCTH KOHIEHCAUMW Ha MexdasHodl rpaHHue. BakHbiM (axTOpOM KOHICHCAUMH

GuHapo#f cMecH ABJAETCA KOHLEHTpaws napa B cBoGoaHoM motoke. IIpH BHICOKHX KOHIEHTPALHAX
Gosee nerTydero xOMnOHeHTa HabmoAaeTC TEHACHUHA K IOJAB/ICHHIO KOHICHCALMH.



